Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1721: 63-72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29423847

RESUMO

The fission yeast, Schizosaccharomyces pombe, is an important model organism for investigations of gene regulation. Essential to such studies is the ability to quantify the levels of a specific RNA. We describe a protocol for the isolation and quantification of RNA in S. pombe using reverse-transcription followed by quantitative PCR. In this procedure, the cells are lysed using zirconia beads, then total RNA is selectively isolated away from proteins and DNA using the Trizol reagent. Contaminating DNA is then removed from the RNA by using TURBO DNase, which is easily inactivated and requires no subsequent clean-up step. The RNA is then reverse transcribed into cDNA using random nine-mers and oligo dT primers . Quantitative PCR using SYBR green is then performed to quantify RNA levels. This protocol has been tested on several S. pombe genotypes and generates highly reproducible results.


Assuntos
RNA Fúngico/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Schizosaccharomyces/genética , Análise de Sequência de RNA/métodos , RNA Fúngico/biossíntese , Schizosaccharomyces/metabolismo
2.
RNA ; 22(5): 657-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27090788

RESUMO

The binding of MS2-GFP protein to arrays of MS2 sites in yeast mRNAs has been used extensively to visualize mRNA localization. We previously reported that arrays of MS2 sites bound by MS2 protein could inhibit Xrn1p and lead to the accumulation of 3' mRNA decay fragments. We suggest that these decay fragments have the potential to complicate mRNA localization studies, as stated in an earlier study.


Assuntos
Cromossomos Fúngicos , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
3.
RNA ; 21(8): 1393-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26092944

RESUMO

Arrays of MS2 binding sites are placed into mRNAs and are commonly used to visualize the localization of mRNAs in vivo by the expression of an MS2-GFP fusion protein. In Saccharomyces cerevisiae, we observed that arrays of MS2 binding sites inhibit 5' to 3' degradation of the mRNA in yeast cells and lead to the accumulation of a 3' mRNA fragment containing the MS2 binding sites. This accumulation can be dependent on the binding of the MS2 stem loops (MS2-SL) by MS2 coat proteins (MCPs). Since such decay fragments can still bind MCP-GFP, the localization of such mRNA fragments can complicate the interpretation of the localization of full-length mRNA in vivo.


Assuntos
Proteínas do Capsídeo/química , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Análise Serial de Proteínas , Estabilidade de RNA , RNA Fúngico/química , RNA Mensageiro/química , Saccharomyces cerevisiae/genética
4.
G3 (Bethesda) ; 5(7): 1453-61, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25957277

RESUMO

Effective boundary mechanisms halt the spread of repressive histone methylation. In the fission yeast Schizosacchromyces pombe, two factors/elements required for boundary function have been described, the jmjC protein Epe1 and binding sites for the RNA polymerase III transcription factor TFIIIC. Perplexingly, individual mutation of Epe1 or TFIIIC sites produces only mild boundary defects, and no other boundary factors have been identified. To approach these issues, we developed a synthetic reporter gene tool that uses a tethered Clr4 histone H3K9 methyltransferase and monitors the ability of a DNA element to block heterochromatin spread. The inverted repeat (IR) that flanks the mat2/3 silent mating-type cassette region demonstrates strong boundary activity compared to sequences that flank pericentromeric heterochromatic repeats. Rather than acting in the same inhibitory pathway, Epe1 and TFIIIC sites mediate boundary function of the IR via the two parallel and largely redundant pathways. We also use the system to demonstrate that HP1/Swi6 promotes boundary activity in addition to promoting silencing and acts in the same pathway as Epe1. Inhibition of heterochromatin spread at the endogenous IR element also requires either Epe1 or TFIIIC sites. Strikingly, mutation of both mechanisms results in growth inhibition that is associated with the spread of heterochromatin over many kilobases to the nearest essential gene and the near-complete silencing of several intervening euchromatic genes. The growth defect is reversed by deletion of clr4+, indicating that the redundant boundary mechanisms protect cells from intrinsic toxicity caused by the spread of heterochromatin.


Assuntos
Heterocromatina/metabolismo , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Inativação Gênica , Genes Reporter , Loci Gênicos , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Sequências Repetidas Invertidas/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Fúngico/química , RNA Fúngico/isolamento & purificação , RNA Fúngico/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo
5.
Nature ; 496(7445): 377-81, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23485968

RESUMO

A hallmark of histone H3 lysine 9 (H3K9)-methylated heterochromatin, conserved from the fission yeast Schizosaccharomyces pombe to humans, is its ability to spread to adjacent genomic regions. Central to heterochromatin spread is heterochromatin protein 1 (HP1), which recognizes H3K9-methylated chromatin, oligomerizes and forms a versatile platform that participates in diverse nuclear functions, ranging from gene silencing to chromosome segregation. How HP1 proteins assemble on methylated nucleosomal templates and how the HP1-nucleosome complex achieves functional versatility remain poorly understood. Here we show that binding of the key S. pombe HP1 protein, Swi6, to methylated nucleosomes drives a switch from an auto-inhibited state to a spreading-competent state. In the auto-inhibited state, a histone-mimic sequence in one Swi6 monomer blocks methyl-mark recognition by the chromodomain of another monomer. Auto-inhibition is relieved by recognition of two template features, the H3K9 methyl mark and nucleosomal DNA. Cryo-electron-microscopy-based reconstruction of the Swi6-nucleosome complex provides the overall architecture of the spreading-competent state in which two unbound chromodomain sticky ends appear exposed. Disruption of the switch between the auto-inhibited and spreading-competent states disrupts heterochromatin assembly and gene silencing in vivo. These findings are reminiscent of other conditionally activated polymerization processes, such as actin nucleation, and open up a new class of regulatory mechanisms that operate on chromatin in vivo.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/ultraestrutura , Microscopia Crioeletrônica , Inativação Gênica , Heterocromatina/química , Heterocromatina/ultraestrutura , Histonas/química , Histonas/metabolismo , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Estrutura Terciária de Proteína , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/ultraestrutura , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 109(28): 11258-63, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733737

RESUMO

Pericentromeric heterochromatin formation is mediated by repressive histone H3 lysine 9 methylation (H3K9Me) and its recognition by HP1 proteins. Intriguingly, in many organisms, RNAi is coupled to this process through poorly understood mechanisms. In Schizosaccharomyces pombe, the H3-K9 methyltransferase Clr4 and the heterochromatin protein 1 (HP1) ortholog Swi6 are critical for RNAi, whereas RNAi stimulates H3K9Me. In addition to the endoribonuclease Dcr1, RNAi in S. pombe requires two interacting protein complexes, the RITS complex, which contains an Argonaute subunit, and the RDRC complex, which contains an RNA-dependent RNA polymerase subunit. We previously identified Ers1 (essential for RNAi-dependent silencing) as an orphan protein that genetically acts in the RNAi pathway. Using recombinant proteins, we show here that Ers1 directly and specifically interacts with HP1/Swi6. Two-hybrid assays indicate that Ers1 also directly interacts with several RNAi factors. Consistent with these interactions, Ers1 associates in vivo with the RITS complex, the RDRC complex, and Dcr1, and it promotes interactions between these factors. Ers1, like Swi6, is also required for RNAi complexes to associate with pericentromeric noncoding RNAs. Overexpression of Ers1 results in a dominant-negative phenotype that can be specifically suppressed by increasing levels of the RDRC subunit Hrr1 or of Dcr1, further supporting a functional role for Ers1 in promoting the assembly of the RNAi machinery. Through the interactions described here, Ers1 may promote RNAi by tethering the corresponding enzyme complexes to HP1-coated chromatin, thereby placing them in proximity to the nascent noncoding RNA substrate.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Regulação Fúngica da Expressão Gênica , Interferência de RNA , Proteínas Recombinantes/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Transporte/metabolismo , Homólogo 5 da Proteína Cromobox , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Inativação Gênica , Heterocromatina/metabolismo , Fenótipo , Schizosaccharomyces/genética , Técnicas do Sistema de Duplo-Híbrido
7.
Mol Cell Biol ; 31(20): 4193-204, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21844224

RESUMO

Spt6 is a conserved factor, critically required for several transcription- and chromatin-related processes. We now show that Spt6 and its binding partner, Iws1, are required for heterochromatic silencing in Schizosaccharomyces pombe. Our studies demonstrate that Spt6 is required for silencing of all heterochromatic loci and that an spt6 mutant has an unusual combination of heterochromatic phenotypes compared to previously studied silencing mutants. Unexpectedly, we find normal nucleosome positioning over heterochromatin and normal levels of histone H3K9 dimethylation at the endogenous pericentric repeats. However, we also find greatly reduced levels of H3K9 trimethylation, elevated levels of H3K14 acetylation, reduced recruitment of several silencing factors, and defects in heterochromatin spreading. Our evidence suggests that Spt6 plays a role at both the transcriptional and posttranscriptional levels; in an spt6 mutant, RNA polymerase II (RNAPII) occupancy at the pericentric regions is only modestly increased, while production of small interfering RNAs (siRNAs) is lost. Taken together, our results suggest that Spt6 is required for multiple steps in heterochromatic silencing by controlling chromatin, transcriptional, and posttranscriptional processes.


Assuntos
Regulação Fúngica da Expressão Gênica , Heterocromatina/genética , Chaperonas de Histonas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Fatores de Elongação da Transcrição/genética , Inativação Gênica , Heterocromatina/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Mutação , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Elongação da Transcrição/metabolismo
8.
Cell ; 144(1): 41-54, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21215368

RESUMO

Partitioning of chromosomes into euchromatic and heterochromatic domains requires mechanisms that specify boundaries. The S. pombe JmjC family protein Epe1 prevents the ectopic spread of heterochromatin and is itself concentrated at boundaries. Paradoxically, Epe1 is recruited to heterochromatin by HP1 silencing factors that are distributed throughout heterochromatin. We demonstrate here that the selective enrichment of Epe1 at boundaries requires its regulation by the conserved Cul4-Ddb1(Cdt)² ubiquitin ligase, which directly recognizes Epe1 and promotes its polyubiquitylation and degradation. Strikingly, in cells lacking the ligase, Epe1 persists in the body of heterochromatin thereby inducing a defect in gene silencing. Epe1 is the sole target of the Cul4-Ddb1(Cdt)² complex whose destruction is necessary for the preservation of heterochromatin. This mechanism acts parallel with phosphorylation of HP1/Swi6 by CK2 to restrict Epe1. We conclude that the ubiquitin-dependent sculpting of the chromosomal distribution of an antisilencing factor is critical for heterochromatin boundaries to form correctly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas Nucleares/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Transdução de Sinais
9.
Genes Dev ; 24(16): 1758-71, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20675407

RESUMO

High-resolution nucleosome occupancy maps of heterochromatic regions of wild-type and silencing-defective mutants of the fission yeast Schizosaccharomyces pombe revealed that heterochromatin induces the elimination of nucleosome-free regions (NFRs). NFRs associated with transcription initiation sites as well as those not associated with promoters are affected. We dissected the roles of the histone H3K9 methyltransferase Clr4 and the HP1 proteins Swi6 and Chp2, as well as the two catalytic activities of the SHREC histone deacetylase (HDAC)/ATPase effector complex. Strikingly, different DNA sites have distinct combinatorial requirements for these factors: Five classes of NFRs were identified that are eliminated by silencing factors through a mechanistic hierarchy governed by Clr4. The SHREC HDAC activity plays a major role in the elimination of class I-IV NFRs by antagonizing the action of RSC, a remodeling complex implicated in NFR formation. We propose that heterochromatin formation involves the deployment in several sequence-specific mechanisms to eliminate gaps between nucleosomes, thereby blocking access to the DNA.


Assuntos
Inativação Gênica , Heterocromatina/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos Fúngicos/genética , Histona-Lisina N-Metiltransferase , Metiltransferases/metabolismo , Schizosaccharomyces/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...